Publications

Recent publications of the research group (Aktuelle Publikationen)

Preprints

Monographs

Publications of the years (Publikationen der Jahre)

  • 2024
  • 2023
    • F. BAASKE, H.-J. SCHMEISSER: On the Cauchy problem for hyperdissipative Navier-Stokes equations in super-critical Besov and Triebel-Lizorkin spaces. Nonlin. Anal.,External link  226, 113140, 2023.
    • G. BYRENHEID, J. HÜBNER, M. WEIMAR: Rate-optimal sparse approximation of compact break-of-scale embeddings. ACHAExternal link,  65, 40-66, 2023. 
    • G. BYRENHEID, S.A. STASYUK, T. ULLRICH: $L_p$-Sampling recovery for non-compact subclasses of $L_\infty$. Front. Appl. Math. Stat.External link, 9, 1216331, 2023.
    • H.F. GONCALVES, D.D. HAROSKE, L. SKRZYPCZAK: Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator. Ann. Mat. Pura Appl. (4)External link, 202, 2481-2516, 2023.
    • D.D. HAROSKE, H.-G. LEOPOLD, S.D. MOURA, L. SKRZYPCZAK: Nuclear and compact embeddings in function spaces of generalised smoothness. Anal. Math.External link, 49 (4), 1007-1039, 2023.
    • D.D. HAROSKE, Z. LIU: Generalized Besov-type and Triebel-Lizorkin-type spaces. Studia Math.External link, 273 (2), 161-199, 2023.
    • D.D. HAROSKE, L. SKRZYPCZAK, H. TRIEBEL: Nuclear Fourier transforms. J. Fourier Anal. Appl .External link, 29, 38, 2023.
    • D.D. HAROSKE, H. TRIEBEL: Morrey smoothness spaces: A new approach. Sci. China Math.External link, 66 (6), 1301-1358, 2023.
    • M. HOVEMANN, S. DAHLKE: Quarklet Characterizations for Triebel-Lizorkin spaces. J. Approx. TheoryExternal link, 295, 105968, 2023.
    • H. TRIEBEL: Building blocks in function spaces. Anal. Math.External link, 49 (4), 1107-1136, 2023.
    • H. TRIEBEL: Truncations and compositions in function spaces. Proc. Steklov Inst. Math.External link, 323, 217-243, 2023. 
  • 2022
    • S. ARTAMONOV, K. V. RUNOVSKI, H.-J. SCHMEISSER: Besov Spaces with Generalized Smoothness and Summability of Multiple Fourier Series.  J. Approx. TheoryExternal link, 284, 105822, 2022.
    • S. ARTAMONOV, K. V. RUNOVSKI, H.-J. SCHMEISSER: Methods of trigonometric approximation and generalized smoothness, II. Eurasian Math. J.External link, 13(4), 18-43, 2022.
    • B. F. BESOY, D.D. HAROSKE, H. TRIEBEL: Traces of some weighted function spaces and related non-standard real interpolation of Besov spaces. Math. Nachr.External link, 295,1669–1689, 2022.
    • J. DUOANDIKOETXEA, M. ROSENTHAL: Singular and fractional integral operators on weighted local Morrey spaces. J. Fourier Anal. Appl.External link, 28, 43, 2022 .
    • D.D. HAROSKE, H.-G. LEOPOLD, L. SKRZYPCZAK: Nuclear embeddings in general vector-valued sequence spaces with an application to Sobolev embeddings of function spaces on quasi-bounded domains. J. ComplexityExternal link, 69, 101605, 2022.
    • D.D. HAROSKE, S. D. MOURA, L. SKRZYPCZAK: Wavelet decomposition and embeddings of generalised Besov-Morrey spaces. Nonlinear Anal.External link, 214(1), 112590, 2022.
    • D.D. HAROSKE, C. SCHNEIDER, K. SZARVAS: Growth envelopes of some variable and mixed function spaces. J. Geom. Anal.External link, 32, 94, 2022.
    • M. HOVEMANN: Triebel-Lizorkin-Morrey Spaces and Differences. Math. Nachr.External link295, 725-761, 2022.
    • H. TRIEBEL: Mapping properties of Fourier transforms. Z. Anal. Anwend.External link, 41(1-2), 133-152, 2022.
    • H. TRIEBEL: Mapping properties of pseudodifferential and Fourier operators. Z. Anal. Anwend.External link, 41(3-4), 371-389, 2022.
  • 2021
    • E.G. BAKHTIGAREEVA, M.L. GOLDMAN, D.D. HAROSKE: Optimal Calderón Spaces for generalized Bessel potentials. In: Function spaces, approximation theory, and related problems of analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii. Tr. Mat. Inst. SteklovaExternal link, 312, 43-81, 2021.   English version: Proc. Steklov Inst. Math.External link, 312 (2021), 37-75
    • B. F. BESOY, F. COBOS, H. TRIEBEL: On function spaces of Lorentz-Sobolev type. Math. Ann.External link, 381, 807-839, 2021.
    • J. DUOANDIKOETXEA, M. ROSENTHAL: Muckenhoupt-type conditions on weighted Morrey spaces. J. Fourier Anal. Appl.External link. 27(2), 32, 2021.
    • H.F. GONCALVES: Non-smooth atomic decomposition of variable 2-microlocal Besov-type and Triebel-Lizorkin-type spaces. Banach J. Math. Anal.External link, 15(3), 50, 2021. 
    • H.F. GONCALVES, D.D. HAROSKE, L. SKRZYPCZAK: Compact embeddings in Besov-type and Triebel-Lizorkin-type spaces on bounded domains. Rev. Mat. Complut.External link, 34, 761-795, 2021.
    • M. HOVEMANN: Truncation in Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Nonlinear Anal.External link, 204, 112239, 2021.
    • M. HOVEMANN: Besov-Morrey spaces and differences. Math. Rep. (Bucur.)External link, 23(73), No. 1-2, 175-192, 2021.
  • 2020
    • S. ARTAMONOV, K.V. RUNOVSKI, H.-J. SCHMEISSER: Approximation by families of generalized sampling series, realizations of generalized $K$-functionals and generalized moduli of smoothness. J. Math. Anal. Appl.External link, 489(1), 124138, 2020.
    • S. ARTAMONOV, K.V. RUNOVSKI, H.-J. SCHMEISSER: Periodic Besov Spaces and Generalized Moduli of Smoothness. Mat. Zametki, 108(4), 617-621, 2020. (Russian). English Version: Math. NotesExternal link, 108(4), 603-607, 2020.
    • O. DOMÍNGUEZ, D.D. HAROSKE, S. TIKHONOV: Embeddings and characterizations of Lipschitz spaces. J. Math. Pures Appl.External link, 144, 69-105, 2020.
    • J. DUOANDIKOETXEA, M. ROSENTHAL: Boundedness properties in a family of weighted Morrey spaces with emphasis on power weights. J. Funct. Anal.External link, 279(8), 1108687, 2020.
    • J. DUOANDIKOETXEA, M. ROSENTHAL: Boundedness of Operators on Certain Weighted Morrey Spaces Beyond the Muckenhoupt Range. Potential Anal.External link, 53, 1255-1268, 2020.
    • D.D. HAROSKE, S.D. MOURA, L. SKRZYPCZAK: Some embeddings of Morrey spaces with critical smoothness. J. Fourier Anal. Appl.External link, 26(3), 50 (2020).
    • D.D. HAROSKE, L. SKRZYPCZAK: Morrey Sequence Spaces: Pitt's Theorem and compact embeddings. Constr. ApproxExternal link., 51(3): 505-535, 2020.
    • D.D. HAROSKE, L. SKRZYPCZAK: Entropy numbers of compact embeddings of smoothness Morrey spaces on bounded domains. J. Approx. TheoryExternal link, 256, 105424, 2020.
    • D.D. HAROSKE, L. SKRZYPCZAK: Nuclear embeddings in weighted function spaces. Integral Equations Operator TheoryExternal link, 92(6), 46, 2020.
    • M. HOVEMANN, W. SICKEL: Besov-type spaces and differences. Eurasian Math. J.External link, 11(1), 25-56, 2020.
    • J. LIU, D.D. HAROSKE, D. YANG: A Survey on Some Anisotropic Hardy-Type Function Spaces. Anal. Theory Appl.External link, 36, 373-456, 2020.
    • J. LIU, D.D. HAROSKE, D. YANG, W. YUAN: Dual Spaces and Their Applications in Wavelet Characterizations of Anisotropic Musielak-Orlicz Hardy Spaces. Appl. Comput. Math.External link, 19(1), 106-131, 2020.
    • C. ZHUO, M. HOVEMANN, W. SICKEL: Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on Domains.  Anal. Geom. Metr. SpacesExternal link, 8, 268-304, 2020.
  • 2019
    • S. ARTAMONOV, K. RUNOVSKI, H.-J. SCHMEISSER: Approximation by bandlimited functions, generalized K-functionals and generalized moduli of smoothness. Analysis Math.External link, 45(1), 1-24, 2019.
    • F. BAASKE, H.-J. SCHMEISSER: On the existence and uniqueness of mild and strong solutions of a generalized nonlinear heat equation. Z. Anal. Anwend.External link, 38(3), 287-308, 2019.
    • D.D. HAROSKE, L. SKRZYPCZAK: Some quantitative result on compact embeddings in smoothness Morrey spaces on bounded domains; an approach via interpolation. Banach Center Publ.External link119, 181-191, 2019.
    • J. LIU, D.D. HAROSKE, D. YANG: New Molecular Characterizations of Anisotropic Musielak-Orlicz Hardy Spaces and Their Applications. J. Math. Anal. Appl.External link, 475(2), 1341-1366, 2019.
    • H. TRIEBEL: Turing patterns, Lengyel-Epstein systems and Faber splines. Banach Center Publ.External link, 119, 311-330, 2019.
  • 2018
    • F. BAASKE, H.-J. SCHMEISSER: On the Cauchy problem for a generalized nonlinear heat equation. Georgian Math. J.External link, 25(2), 169-180, 2018.
    • J. DUOANDIKOETXEA, M. ROSENTHAL: Extension and boundedness of operators on Morrey spaces from extrapolation techniquess and embeddings,  J. Geom. Anal.External link, 28(4), 3081-3108, 2018.
    • D.D. HAROSKE, C. SCHNEIDER, L. SKRZYPCZAK: Morrey spaces on domains: Different approaches and growth envelopes. J. Geom. Anal.External link, 28(2), 817-841, 2018.
    • D.D. HAROSKE, P. SKANDERA, H. TRIEBEL: An approach to wavelet isomorphisms of function spaces via atomic representations. J. Fourier Anal. Appl.External link, 24(3), 830-871, 2018.
  • 2017
    • F. BAASKE, H.-J. SCHMEISSER: On a generalized nonlinear heat equation in Besov and Triebel-Lizorkin spaces. Math. Nachr., 290 (14-15), 2111-2131, 2017.
    • D.D. HAROSKE, T. MIETH: Traces of Muckenhoupt weighted function spaces in case of distant singularities. Georgian Math. J., 24(3), 373-392, 2017.
    • D.D. HAROSKE, S. MOURA, C. SCHNEIDER, L. SKRZYPCZAK: Unboundedness properties of Smoothness Morrey spaces of regular distributions on domains. Sci. China Math.External link, 60(12), 2349-2376, 2017.
    • D.D. HAROSKE, H.-J. SCHMEISSER: Gagliardo-Nirenberg inequalities for spaces with dominating mixed derivatives. In P. Jain and H.-J. Schmeisser (ed.), Function Spaces and Inequalities.External link New Delhi, India, December 2015. Springer Proceedings in Mathematics & Statistics, pages 117-135. Springer, Singapore, 2017.
    • D.D. HAROSKE, L. SKRZYPCZAK: Embeddings of weighted Morrey spaces. Math. Nachr., 290(7), 1066-1086, 2017.
    • D.D. HAROSKE, L. SKRZYPCZAK: Compact embeddings of weighted smoothness spaces of Morrey type: an example. In: M. Milman and M. Cwikel (ed.), Functional Analysis, Harmonic Analysis and Image Processing: A collection of papers in honor of Björn JawerthExternal link, volume 693 of Contemp.Math., pages 235-254. AMS, Providence, RI., 2017.
    • H. TRIEBEL: Tempered homogeneous function spaces, II. In: M. Milman and M. Cwikel (ed.), Functional Analysis, Harmonic Analysis and Image Processing: A collection of papers in honor of Björn JawerthExternal link, volume 693 of Contemp.Math., pages 331-362. AMS, Providence, RI., 2017.
    • H. TRIEBEL: The Fatou Property of Function Spaces, Heat Kernels, Admissible Norms and Mapping Properties. In P. Jain and H.-J. Schmeisser (ed.), Function Spaces and Inequalities.External link New Delhi, India, December 2015. Springer Proceedings in Mathematics & Statistics, pages 283-298. Springer, Singapore, 2017.
    • H. TRIEBEL: Tempered homogeneous function spaces, III. Analysis Math., 43(2), 339-357, 2017.
    • H. TRIEBEL: Nuclear embeddings in function spaces. Math. Nachr., 290(17-18), 3038-3048, 2017.
  • 2016
    • F. COBOS, O. DOMINGUEZ, H. TRIEBEL: Characterizations of logarithmic Besov spaces in terms of differences, Fourier-analytical decompositions, wavelets and semi-groups. J. Funct. Anal., 270(12), 4386-4425, 2016.
    • D.D. HAROSKE, S.D. MOURA: Some specific unboundedness property in Smoothness Morrey Spaces. The non-existence of growth envelopes in the subcritical case. Acta Math. Sin. (Engl. Ser.), 32(2), 137-152, 2016.
    • D.D. HAROSKE, S.D. MOURA, L. SKRZYPCZAK: Smoothness Morrey Spaces of regular distributions, and some unboundedness property. Nonlinear Anal., 139, 218-244, 2016.
    • T. MIETH: Entropy and approximation numbers of weighted Sobolev spaces via bracketing. J. Funct. Anal., 270, 4322-4339, 2016.
    • T. MIETH: Compact embeddings of Sobolev spaces with power weights perturbed by slowly varying functions. Math. Nachr., 289(10), 1255-1271, 2016.
    • M. ROSENTHAL, H.-J. SCHMEISSER: On the boundedness of singular integrals in Morrey spaces and its preduals, J. Fourier Anal. Appl., 22(2), 462-490, 2016. (DOI 10.1007/s00041-015-9427-9) & ErratumExternal link (DOI 10.1007/s00041-015-9438-6), 22(2), p. 491, 2016.
    • M. ROSENTHAL, H.-J. SCHMEISSER: The boundedness of operators in Muckenhoupt weighted Morrey spaces via extrapolation techniques and duality, Rev. Mat. Complut.29(3), 623-657, 2016.
    • H. TRIEBEL: A Note on Function Spaces in Rough Domains. Proc. Steklov Inst. Math., 293. 338-342, 2016. (Russian: Trudy Mat. Inst. Steklov, 2016, 293:346-351)
  • 2015
    • F. BAASKE: Heat and Navier-Stokes equations in supercritical function spaces. Rev. Mat. Complut., 28(2), 281-301, 2015.
    • A.M. CAETANO, D.D. HAROSKE: Embeddings of Besov spaces on fractal $h$-sets. Banach J. Math. Anal.External link, 9(4), 259-295, 2015.
    • A.M. CAETANO, D.D. HAROSKE: Traces for Besov spaces on fractal $h$-sets and dichotomy results. Studia Math.External link, 231, 117-147, 2015.
    • M.L. GOL'DMAN, D.D. HAROSKE: Optimal Calderon Space for Generalized Bessel Potentials. Dokl. Akad. Nauk, 463(1), 14-17, 2015. English transl.: Dokl. Math. 92, 404-407 (2015)
    • H.-G. LEOPOLD, L. SKRZYPCZAK: Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic oparators. Part II. J. Math. Anal. Appl., 429(1), 439-460, 2015.
    • T. MIETH: Entropy and approximation numbers of embeddings of weighted Sobolev spaces. J. Approx. Theory, 192, 250-272, 2015.
    • M. ROSENTHAL, H. TRIEBEL: Morrey spaces, their duals and preduals. Rev. Mat. Complut.External link, 28(1), 1-30, 2015.
    • K. RUNOVSKI, H.-J. SCHMEISSER: Moduli of Smoothness Related to Fractional Riesz-Derivatives. Z. Anal. Anwend., 34(1), 109-125, 2015.
    • K. RUNOVSKI, H.-J. SCHMEISSER: Moduli of Smoothness Related to the Laplace-Operator. J. Fourier Anal. Appl., 21(3), 449-471, 2015.
    • H. TRIEBEL: Global solutions of Navier-Stokes equations for large initial data belonging to spaces with dominating mixed smoothness. J. ComplexityExternal link, 31(2), 147-161, 2015.
    • H. TRIEBEL: Navier-Stokes equations, Haar wavelets and Reynolds numbers. Math. Nachr.External link, 288(8-9), 1057-1072, 2015.
    • W. YUAN, D.D. HAROSKE, S.D. MOURA, L. SKRZYPCZAK, D. YANG: Limiting Embeddings in Smoothness Morrey Spaces, Continuity Envelopes and Applications. J. Approx. Theory, 192, 306-335, 2015.
    • W. YUAN, D.D. HAROSKE, L. SKRZYPCZAK, D. YANG: Embedding properties for Besov-Type Spaces. Appl. Anal.External link, 94(2), 318-340, 2015.
    • W. YUAN, D.D. HAROSKE, L. SKRZYPCZAK, D. YANG: Embedding properties for weighted Besov-Type Spaces. Anal. Appl. (Singap.)External link, 13(5), 507-553, 2015.
  • 2014
    • A. FIORENZA, M. KRBEC, H.-J. SCHMEISSER: An improvement of dimension-free Sobolev imbeddings in r.i. spaces. J. Funct. Anal.External link, 267(1), 243-261, 2014.
    • M.L. GOL'DMAN, D.D. HAROSKE: Optimal Calderon Space for Bessel Potentials. Dokl. Akad. Nauk, 458(5), 510-513, 2014. English transl.: Dokl. Math. 90, 599-602 (2014)
    • D.D. HAROSKE, PH. SKANDERA: Embeddings of doubling weighted Besov spaces. Banach Center Publ.External link, 102, 105-119, 2014.
    • D.D. HAROSKE, L. SKRZYPCZAK: On Sobolev and Franke-Jawerth embeddings of smoothness Morrey spaces. Rev. Mat. Complut.External link, 27(2), 541-573, 2014.
    • H. KEMPKA, J. VYBÍRAL: Lorentz spaces with variable exponents. Math. Nachr.External link, 287(8-9), 938-954, 2014.
    • M. ROSENTHAL, H. TRIEBEL: Calderón-Zygmund operators in Morrey spaces. Rev. Mat. Complut.External link, 27(1), 1-11, 2014.
    • K. RUNOVSKI, H.-J. SCHMEISSER: General moduli of smoothness and approximation by families of linear polynomial operators. In: New Perspectives on Approximation and Sampling Theory. (Festschrift in Honor of Paul Butzer's 85th Birthday; eds. A. I. Zayed, G. Schmeisser). Ch. 11, pages 269-298, Birkhäuser, 2014.
    • H. TRIEBEL: Weighted discrepancy and numerical integration in function spaces. J. ComplexityExternal link, 30, 69-86, 2014.
    • H. TRIEBEL: Gagliardo-Nirenberg inequalities. Proc. Steklov Inst. Math.External link, 284, 263-279, 2014.
    • H. TRIEBEL:: Tractable embeddings of Besov spaces into Zygmund spaces, II. Banach Center Publ.External link, 102, 229-235, 2014.
  • 2013
    • A.M. CAETANO, H.-G. LEOPOLD: On generalized Besov and Triebel-Lizorkin spaces of regular distributions. J. Funct. Anal., 264, 2676-2703, 2013.
    • M.L. GOL'DMAN, D.D. HAROSKE: Estimates for continuity envelopes and approximation numbers of Bessel potentials. J. Approx. Theory, 172, 58-85, 2013.
    • M.L. GOL'DMAN, D.D. HAROSKE: Optimal Embedding and Sharp Estimates of the Continuity Envelope for Generalized Bessel Potentials. Dokl. Akad. Nauk, 453(3), 243-246, 2013. English transl.: Dokl. Math. 88, 664-668 (2013)
    • M.L. GOL'DMAN, A MALYSHEVA, D.D. HAROSKE: Estimates of the uniform modulus of continuity for Bessel potentials. Dokl. Akad. Nauk, 450(2), 143-146, 2013. Russian; English transl.: Dokl. Math. 87, 282-285 (2013)
    • D.D. HAROSKE, L. SKRZYPCZAK: Embeddings of Besov-Morrey spaces on bounded domains. Studia Math., 218, 119-144, 2013.
    • D.D. HAROSKE, H. TRIEBEL: Some recent developments in the theory of function spaces involving differences. J. Fixed Point Theory Appl.External link, 13(2), 341-358, 2013.
    • H. KEMPKA, J. VYBÍRAL: A note on the spaces of variable integrability and summability of Almeida and Hästö. Proc. AMS, 141, 3207-3212, 2013.
    • M. KRBEC, H.-J. SCHMEISSER  On dimension-free integrability improvement for Sobolev imbeddings. Eurasian Math. J., 4(1), 65-75, 2013.
    • H.-G. LEOPOLD, L. SKRZYPCZAK: Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic oparators. Proc. Edinb. Math. Soc., 56(3), 829-851, 2013.
    • M. ROSENTHAL: Local means, wavelet bases and wavelet isomorphisms in Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Math. Nachr., 286(1), 59-87, 2013.
    • B. SCHARF: Atomic representations in function spaces and applications to pointwise multipliers and diffeomorphisms, a new approach. Math. Nachr., 286(2-3), 283-305, 2013.
    • H. TRIEBEL: Characterizations of some function spaces in terms of Haar wavelets. Comment. Math., 53(2), 135-153, 2013.
  • 2012
    • D.D. HAROSKE: Dichotomy in Muckenhoupt weighted function space: A fractal example. In: B.M. Brown, J. Lang, I. Wood (Eds.), Spectral Theory, Function Spaces and Inequalities. New Techniques and Recent Trends, Operator Theory: Advances and Applications, 219, pages 69-89, Springer Basel, 2012.
    • D.D. HAROSKE, L. SKRZYPCZAK : Continuous embeddings of Besov-Morrey function spaces. Acta Math. Sin. (Engl. Ser.), 28(7), 1307-1328, 2012.
    • H. KEMPKA, J. VYBÍRAL : Spaces of variable smoothness and integrability: Characterizations by local means and ball means of differences. J. Fourier Anal. Appl., 18(4), 852-891, 2012.
    • M. KRBEC, H.-J. SCHMEISSER : On dimension-free Sobolev imbeddings I. J. Math. Anal. Appl.External link, 387(1), 114-125, 2012.
    • M. KRBEC, H.-J. SCHMEISSER : On dimension-free Sobolev imbeddings II. Rev. Mat. Complut., 25(1), 247-265, 2012.
    • K. RUNOVSKI, H.-J. SCHMEISSER : Smoothness and function spaces generated by homogeneous multipliers. J. Funct. Spaces Appl., Article ID 643135, 22 pages, 2012.
    • B. SCHARF, H.-J. SCHMEISSER, W. SICKEL: Traces of vector-valued Sobolev Spaces. Math. Nachr., 285(8-9), 1082-1106, 2012.
    • H. TRIEBEL: Entropy and approximation numbers of limiting embeddings, an approach via Hardy inequalities and quadratic forms. J. Approx. Theory, 164(1), 31-46, 2012.
    • H. TRIEBEL: Entropy numbers of quadratic forms and their applications to spectral theory. In: B.M. Brown, J. Lang, I. Wood (Eds.), Spectral Theory, Function Spaces and Inequalities. New Techniques and Recent Trends, Operator Theory: Advances and Applications, 219, pages 243-262, Springer Basel, 2012.
  • 2011
    • D.D. HAROSKE : Lipschitz continuity in Muckenhoupt $\mathcal{A}_1$ weighted function spaces. Banach Center Publ., 92, 107-129, 2011.
    • D.D. HAROSKE, H.-J. SCHMEISSER : Extrapolation of function spaces and related topics. Proc. NAFSA-9, Prague 2011, pages 271-301, 2011.
    • D.D. HAROSKE, L. SKRZYPCZAK : Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights. Annales Academiae Scientiarum Fennicae, 36(1), 111-138, 2011.
    • D.D. HAROSKE, L. SKRZYPCZAK : Entropy numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases. J. Funct. Spaces Appl., 9(2), 129-178, 2011.
    • D.D. HAROSKE, H. TRIEBEL: Embeddings of function spaces: A criterion in terms of differences. Complex Var. Elliptic Equ., 56(10-11), 931-944, 2011.
    • Y. IL'YASOV, TH.RUNST: Positive solutions of indefinite equations with p-Laplacian and supercritical nonlinearity. Complex Var. Elliptic Equ., 56(10-11), 945-954, 2011.
    • M. KABANAVA : Function spaces on the snowflake. Banach Center Publ., 92, 131-142, 2011.
    • M. KRBEC, H.-J. SCHMEISSER : Dimension-invariant Sobolev imbeddings. Banach Center Publ., 92, 205-217, 2011.
    • H.-G. LEOPOLD, L. SKRZYPCZAK : Entropy numbers of embeddings of some 2-microlocal Besov spaces. J. Approx. Theory , 163(4), 505-523, 2011 .
    • V. RUKASOV, K. RUNOVSKI, H.-J. SCHMEISSER : Approximation by families of linear trigonometric polynomial operators and smoothness properties of functions. Math. Nachr., 284(11-12), 1523-1537, 2011.
    • K. RUNOVSKI, H.-J. SCHMEISSER : Methods of trigonometric approximation and generalized smoothness. I. Eurasian Math. J.External link, 2(3), 98-124, 2011.
    • H. TRIEBEL: Entropy numbers in function spaces with mixed integrability. Rev. Mat. Complut., 24(1), 169-188, 2011.
    • H. TRIEBEL: Limits of Besov norms. Arch. Math., 96(2), 169-175, 2011.
    • H. TRIEBEL: Eigenvalue distributions of some non-isotropic degenerate elliptic operators. Rev. Mat. Complut., 24(2), 343-355, 2011.
    • H. TRIEBEL: Tractable embeddings of Besov spaces into Zygmund spaces. Banach Center Publ., 92, 361-377, 2011.
  • 2010
    • D.D. HAROSKE : Growth envelopes in Muckenhoupt weighted function spaces: the general case. Funct. Approx. Comment. Math., 42(2), 169-216, 2010.
    • D.D. HAROSKE, H.-J. SCHMEISSER : On trace spaces of function spaces with a radial weight: the atomic approach. Complex Var. Elliptic Equ., 55(8-10), 875-896, 2010.
    • D.D. HAROSKE, L. SKRZYPCZAK : Spectral theory of some degenerate elliptic operators with local singularities. J. Math. Anal. Appl., 371(1), 282-299, 2010.
    • Y. IL'YASOV, TH. RUNST: An Anti-Maximum Principle for Degenerate Elliptic Boundary Value Problems with Indefinite Weights. Complex Var. Elliptic Equ., 55(8-10), 897-910, 2010.
    • M. KABANAVA : Function spaces on the Koch curve. J. Funct. Spaces Appl., 8(3), 287-299, 2010.
    • H. KEMPKA: Atomic, molecular and wavelet decomposition of generalized $2$-microlocal Besov spaces. J. Funct. Spaces Appl., 8(2), 129-165, 2010.
    • H. KEMPKA: Atomic, Molecular and Wavelet decomposition of 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability. Funct. Approx. Comment. Math., 43(2), 171-208, 2010.
    • H. KEMPKA: $2$-microlocal Besov spaces. In: Recent developments in Fractals and related fields, pages 191-201, Birkhäuser, Basel, 2010.
    • K. RUNOVSKI, H.-J. SCHMEISSER : On convergence of families of linear polynomial operators generated by matrices of multipliers. Eurasian Math. J., 1(3), 112-133, 2010.
    • K. RUNOVSKI, H.-J. SCHMEISSER : On families of linear polynomial operators generated by Riesz kernels. Eurasian Math. J., 1(4), 124-139, 2010
    • C. SCHNEIDER : Trace operators in Besov and Triebel-Lizorkin spaces. Z. Anal. Anwendungen, 29(3), 275-302, 2010.
    • H. TRIEBEL: Numerical integration and discrepancy, a new approach. Math. Nachr., 283(1), 139-159, 2010.
    • H. TRIEBEL: Sobolev-Besov spaces of measurable functions. Studia Math., 201(1), 69-86, 2010.

    J. VYBÍRAL : On sharp embeddings of Besov and Triebel-Lizorkin spaces in the subcritical case. Proc. AMS, 138, 141-146, 2010.

  • 2009
    • Z. BURINSKA, K. RUNOVSKI, H.-J. SCHMEISSER : On quality of approximation by families of generalized sampling series. Sampl. Theory Signal Image Process., 8(2), 105-126, 2009.
    • M. HANSEN, J. VYBÍRAL : The Jawerth-Franke embedding of spaces with dominating mixed smoothness. Georgian Math. J., 16 (4), 667-682, 2009.
    • D.D. HAROSKE, C. SCHNEIDER : Besov spaces with positive smoothness on $\mathbb{R}^n$, embeddings and growth envelopes. J. Approx. Theory, 161(2), 723-747, 2009.
    • Y. IL'YASOV, TH. RUNST, A. YOUSSFI: On the existence of pair positive-negative solutions for resonance problems. Nonlinear Anal., 70, 3461-3471, 2009.
    • H. KEMPKA: $2$-microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev. Mat. Complut., 22 (1), 227-251, 2009.
    • V. RUKASOV, K. RUNOVSKI, H.-J. SCHMEISSER : On Convergence of Families of Linear Polynomial Operators. Funct. Approx. Comment. Math., 41(1), 41-54, 2009.
    • C. SCHNEIDER : On Dilation Operators in Besov spaces. Rev. Mat. Complutense, 22 (1), 111-128, 2009.
    • C. SCHNEIDER : Spaces of Sobolev type with positive smoothness on $\mathbb{R}^n$, embeddings and growth envelopes. J. Funct. Spaces Appl., 7(3), 251-288, 2009.
    • C. SCHNEIDER, J. VYBÍRAL : On dilation operators in Triebel-Lizorkin spaces. Funct. Approx. Comment. Math., 41(2), 139-162, 2009.
    • L. SKRZYPCZAK, J. VYBÍRAL : Corrigenda to the paper: "On approximation numbers of Sobolev embeddings of weighted function spaces". J. of Appr. Theory, 156, 116-119, 2009.
    • E. TAMÁSI : Eigenvalue Distribution of Semi-Elliptic Operators in Anisotropic Sobolev Spaces. Z. Anal. Anwendungen, 28(2), 233-248, 2009.
    • H. TRIEBEL: Function spaces on cellular domains. In: Sobolev spaces in mathematics II. Applications in analysis and partial differential equations, pages 355-385, Springer, New York, 2009.
    • J. VYBÍRAL : Sobolev and Jawerth embeddings for spaces with variable smoothness and integrability. Annales Academiae Scientiarum Fennicae, 34(2), 529-544, 2009.
  • 2008
    • D.D. HAROSKE: Singularities in Muckenhoupt weighted function spaces. Banach Center Publ., 79, 95-112, 2008.
    • D.D. HAROSKE: Sobolev spaces with Muckenhoupt weights, singularities and inequalities. Georgian Math. J., 15(2), 263-280, 2008.
    • D.D. HAROSKE, S.D. MOURA : Continuity envelopes and sharp embeddings in spaces of generalized smoothness. J. Funct. Anal., 254(6), 1487-1521, 2008.
    • D.D. HAROSKE, I. PIOTROWSKA : Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis. Math. Nachr., 281(10), 1476-1494, 2008.
    • D.D. HAROSKE, L. SKRZYPCZAK : Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, I. Rev. Mat. Complut., 21(1), 135-177, 2008.
    • A. HINRICHS, E. NOVAK, J. VYBÍRAL : Linear information versus function evaluations for $L_2$-approximation. J. of Appr. Theory, 153, 97-107, 2008.
    • M. KABANAVA : Tempered Radon measures. Rev. Mat. Complut., 21(2), 553-564, 2008.
    • I. PIOTROWSKA: Entropy and approximation numbers of embeddings between weighted Besov spaces. Banach Center Publ., 79, 173-185, 2008.
    • K. RUNOVSKI, H.-J. SCHMEISSER : On approximation methods generated by Bochner-Riesz kernels. J. Fourier Anal. Appl., 14, 16-38, 2008.
    • J. SCHNEIDER : Some results on function spaces of varying smoothness. Banach Center Publ., 79, 187-195, 2008.
    • H. TRIEBEL: Local means and wavelets in function spaces. Banach Center Publ., 79, 215-234, 2008.
    • H. TRIEBEL: Wavelet bases in Lorentz and Zygmund spaces. Georgian Math. J., 15(2), 389--402, 2008.
    • H. TRIEBEL: The dichotomy between traces on $d$-sets $\Gamma$ in $\mathbb{R}^n$ and the density of $D(\mathbb{R}^n\setminus\Gamma)$ in function spaces. Acta Math. Sin. (Engl. Ser.), 24(4), 539--554, 2008.
    • H. TRIEBEL: Fractal analysis, an approach via function spaces. In: P. Ciatti, E. Gonzalez, M. Lanza de Cristoforis, G.P. Leonardi (ed.), Topics in Mathematical Analysis, Ser. Analysis, Applications and Computation, 3, pages 413-447, World Scientific, NJ, 2008.
    • H. TRIEBEL: Wavelets in function spaces. In: D. Mitrea, M. Mitrea (ed.), Perspectives in Partial Differential Equations, Harmonic Analysis and Applications: A Volume in Honor of Vladimir G. Maz'ya's 70th Birthday, Proc. Sympos. Pure Math., 79, pages 347-376, Amer. Math. Soc., Providence, RI, 2008.
    • J. VYBÍRAL : A new proof of the Jawerth-Franke embedding. Rev. Mat. Complut., 21(1), 75-82, 2008.
    • J. VYBÍRAL : On dilation operators and sampling numbers. J. Function Spaces Appl., 6(1), 17-46, 2008.
    • J. VYBÍRAL : Widths of embeddings in function spaces. J. Compl., 24, 545-570, 2008.
  • 2007
    • A.M. CAETANO, S. LOPES, H. TRIEBEL : A homogeneity property for Besov spaces. J. Function Spaces Appl., 5, 123-132, 2007.  
    • D.D. HAROSKE: Growth envelope functions in Besov and Sobolev spaces. Local versus global results. Math. Nachr., 280(9-10), 1094-1107, 2007.
    • D.D. HAROSKE: Envelope functions in real interpolation spaces. A first approach. In: L. De Carli, M. Milman (ed.), Interpolation Theory and Applications, Contemp.Math., 445, pages 93-102. Proceedings of the Conference held in Miami, FL, March 29-31, 2006, AMS, Providence, RI., 2007.
    • J. JOHNSEN, W. SICKEL : A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin-Triebel spaces with mixed norms. J. Funct. Spaces Appl. 5(2), 183--198, 2007.
    • M. KRBEC, H.-J. SCHMEISSER : Critical imbeddings with multivariate rearrangements. Stud. Math., 181(3), 255-284, 2007.
    • M. KRBEC, H.-J. SCHMEISSER : A limiting case of the uncertainty principle. Proc. Equadiff 11, Bratislava 2005, 181-187, 2007.
    • TH. KÜHN, H.-G. LEOPOLD, W. SICKEL, L. SKRZYPCZAK : Entropy numbers of embeddings of weighted Besov spaces III. Weights of logarithmic type. Math. Z., 255(1), 1-15, 2007.
    • S.D. MOURA, I. PIOTROWSKA, M. PIOTROWSKI : Non-smooth atomic decompositions of anisotropic function spaces and some applications. Studia Math., 180(2), 169-190, 2007.
    • H.-J. SCHMEISSER : Recent developments in the theory of function spaces with dominating mixed smoothness. Proc. NAFSA-8, Prague 2006, pages 145-204, 2007.
    • H.-J. SCHMEISSER : Vector-valued function spaces: embeddings and traces. Proc. Harmonic Analysis and its Applications, Sapporo, September 2-4, 2007, pages 113-140, 2007.
    • J. SCHNEIDER : Function spaces of varying smoothness, I. Math. Nachr., 280(16), 1801-1826, 2007.
    • W. SICKEL, J. VYBÍRAL : Traces of function spaces with dominating mixed derivative in $\mathbb{R}^3$. Czechoslovak Math. J., 57(4), 1239-1273, 2007.
    • H. TRIEBEL: Wavelets in function spaces on Lipschitz domains. Math. Nachr., 280(9-10), 1205-1218, 2007.
    • H. TRIEBEL: Wavelet para-bases and sampling numbers in function spaces on domains. J. Complexity, 23, 468-497, 2007.
    • B. VEDEL : Besov Characteristic of a distribution. Rev. Mat. Complut., 20 (2), 407-421, 2007.
    • J. VYBÍRAL : A remark on better-$\lambda$ inequality. Math. Ineq. and Appl., 10(2), 335-341, 2007.
    • J. VYBÍRAL : Optimal Sobolev embeddings on $\mathbb{R}^n$. Publ. Mat., 51, 17-44, 2007.
    • J. VYBÍRAL : Sampling numbers and function spaces. J. Compl., 23, 773-792, 2007.
  • 2006
    • G. BOURDAUD, M. MOUSSAI, W. SICKEL : An optimal symbolic calculus on Besov algebras. Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 949--956, 2006.
    • Z. BURINSKA, K. RUNOVSKI, H.-J. SCHMEISSER : On the approximation by generalized sampling series in $L_p$-metrics. Sampl. Theory Signal Image Process, 5, 365-393, 2006.
    • A.M. CAETANO, H.-G. LEOPOLD : Local growth envelopes of Triebel-Lizorkin spaces of generalized smoothness. J. Fourier Anal. Appl., 12, 427-445, 2006.  
    • E.W. FARKAS, H.-G. LEOPOLD : Characterisations of function spaces of generalised smoothness. Ann. Mat. Pura Appl., 1-62, 185(1), 2006.
    • TH. KÜHN, H.-G. LEOPOLD, W. SICKEL, L. SKRZYPCZAK : Entropy numbers of embeddings of weighted Besov spaces. Constr. Approx., 23, 61-77, 2006.
    • TH. KÜHN, H.-G. LEOPOLD, W. SICKEL, L. SKRZYPCZAK : Entropy numbers of embeddings of weighted Besov spaces II. Proc. Edinburgh Math. Soc. (2), 49, 331-359, 2006.
    • E. NOVAK, H. TRIEBEL : Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx., 23, 325-350, 2006.
    • I. PIOTROWSKA : Traces on fractals of function spaces with Muckenhoupt weights. Functiones et Approximatio, 36, 95-117, 2006.
    • K. RUNOVSKI, I. RYSTSOV, H.-J. SCHMEISSER : Computational Aspects of a Method of Stochastic Approximation. Z. Anal. Anwendungen, 25 (3), 367-383, 2006.
    • E. TAMÁSI : Anisotropic Besov spaces and approximation numbers of traces on related fractal sets. Rev. Mat. Complut., 19 (2), 297-321, 2006.
    • J. VYBÍRAL : Function spaces with dominating mixed smoothness. Dissertationes Math., 436, 1--73, 2006.
  • 2005
    • G. BOURDAUD, M. LANZA DE CRISTOFORIS, W. SICKEL : Superposition operators and functions of bounded $p$-variation II. Nonlinear Anal., 62(5), 483--517, 2005.
    • A.M. CAETANO, D.D. HAROSKE : Continuity envelopes of spaces of generalised smoothness: a limiting case; embeddings and approximation numbers. J. Function Spaces Appl., 33-71, 3(1), 2005.
    • D.D. HAROSKE, E. TAMÁSI : Wavelet frames in anisotropic Besov spaces. Georgian Math. J., 637--658, 12(4), 2005.
    • D.D. HAROSKE, H. TRIEBEL : Wavelet bases and entropy numbers in weighted function spaces. Math. Nachr., 108-132, 278(1-2), 2005.
    • Y. IL'YASOV, TH. RUNST: On nonlocal calculation for inhomogeneous indefinite Neumann boundary value problems. Calc. Var., 22(1), 101-127, 2005.
    • M. KRBEC, H.-J. SCHMEISSER : Refined limiting imbeddings for Sobolev spaces of vector-valued functions. J. Funct. Anal., 227, 372-388, 2005.
    • TH. RUNST, A. YOUSSFI: Boundary value problems for Waldenfels operators. Indiana Univ. Math. J., 237-256, 54 (1), 2005.
    • TH. RUNST, A. YOUSSFI: Mapping properties of integral operators of Levy type. Georgian Math. J., 377-387, 12 (2), 2005.
    • W. SICKEL, H.-J. SCHMEISSER : Vector-valued Sobolev spaces and Gagliardo-Nirenberg inequalities. Progr. Nonlinear Differential Equations Appl., 64, 463-472, 2005.
    • H. TRIEBEL : A new approach to function spaces on quasi-metric spaces. Rev. Mat. Complut., 18 (1), 7-48, 2005.
    • H. TRIEBEL : Sampling numbers and embedding constants. Trudy Mat. Inst. Steklov, 248, 275-284, 2005.
    • H. TRIEBEL : Spaces on sets. Russian Math. Surveys, 60(6), 1195-1215, 2005.   (Uspekhi Mat. Nauk, 60(6), 187-206, 2005.)
    • H. TRIEBEL : Wavelet bases in anisotropic function spaces. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Milovy, 2004, 370-387, Math. Inst. Acad. Sci. Czech Republic, Prague, 2005.
    • J. VYBÍRAL : A diagonal embedding theorem for function spaces with dominating mixed smoothness. Functiones et Approximatio, XXXIII, 101--120, 2005.
  • 2004
    • F. COBOS, L. FERNANDEZ-CABRERA, H. TRIEBEL : Abstract and concrete logarithmic interpolation spaces. J. London Math. Soc. (2), 70 (1), 231-243, 2004.
    • D.D. HAROSKE, S.D. MOURA : Continuity envelopes of spaces of generalised smoothness, entropy and approximation numbers. J. Approx. Theory, 128 (2), 151-174, 2004.
    • Y. IL'YASOV, TH. RUNST: On positive solutions of indefinite inhomogeneous Neumann boundary value problems.Topol. Methods Nonlinear Anal., 24, 41-67, 2004.
    • K. RUNOVSKI, H.-J.SCHMEISSER : On the convergence of Fourier means and interpolation means. J. Comput. Anal. Appl., 6, 211-227, 2004.
    • H.-J. SCHMEISSER, W. SICKEL : Spaces of functions of mixed smoothness and approximation from hyperbolic crosses. J. Approx. Theory, 128 (2), 115-150, 2004.
    • H. TRIEBEL : The distribution of eigenvalues of some fractal elliptic operators and Weyl measures. Oper. Theory Adv. Appl., 147, 457-473, 2004.
    • H. TRIEBEL : Approximation numbers in function spaces and the distribution of eigenvalues of some fractal elliptic operators. J. Approx. Theory, 129, 1-27, 2004.
    • H. TRIEBEL : The fractal Laplacian and multifractal quantities. Fractal Geometry and Stochastics III. Progress in Probability, 57, (ed. Ch. Bandt, U. Mosco, M. Zähle), 173-192, Birkhäuser, Basel, 2004.
    • H. TRIEBEL : Lacunary measures and self-similar probability measures in function spaces.Acta Math. Sin. (Engl. Ser.), 20 (4), 577-588, 2004.
    • H. TRIEBEL : A note on wavelet bases in function spaces.   in: Orlicz centenary volume, 193-206, Banach Center Publ., 64, Polish Acad. Sci., Warsaw, 2004.
    • H. TRIEBEL : The regularity of measures and related properties of eigenfunctions and first eigenvalues of some fractal elliptic operators. Comment. Math. Prace Mat. (Tomus specialis in Honorem Juliani Musielak), 257-283, 2004.
  • 2003
    • G. BOURDAUD, M. REISSIG, W. SICKEL : Hyperbolic equations, function spaces with exponential weights and Nemytskij operators Ann. Mat. Pura Appl., 182 (4), 409-455, 2003.
    • M. BRICCHI: Complements and results on $h$-sets. Function spaces, differential operators and nonlinear analysis. The Hans Triebel Anniversary Volume. Proc. Conf. Teistungen, 2001 (ed. D.D. Haroske, Th. Runst, H.-J. Schmeißer), 219-230, Birkhäuser, Basel, 2003.
    • M. BRICCHI, S.D. MOURA : Complements on Growth Envelopes of Spaces with Generalized Smoothness in the Sub-Critical Case. Z. Anal. Anwendungen, 22 (2), 383-398, 2003.
    • A.M. CAETANO, D.D. HAROSKE : Sharp estimates of approximation numbers via growth envelopes. Function spaces, differential operators and nonlinear analysis. The Hans Triebel Anniversary Volume. Proc. Conf. Teistungen, 2001 (ed. D.D. Haroske, Th. Runst, H.-J. Schmeißer), 237-244, Birkhäuser, Basel, 2003.
    • S. DACHKOVSKI : Anisotropic function spaces and related semi-linear hypoelliptic equations. Math. Nachr., 248-249 (1), 40-61, 2003.
    • S. DACHKOVSKI : Regularity problems for some semi-linear problems. Function spaces, differential operators and nonlinear analysis. The Hans Triebel Anniversary Volume. Proc. Conf. Teistungen, 2001 (ed. D.D. Haroske, Th. Runst, H.-J. Schmeißer), 255-266, Birkhäuser, Basel, 2003.
    • Y. IL'YASOV, TH. RUNST: Nonlocal investigations of inhomogeneous indefinite elliptic equations via variational methods. Function spaces, differential operators and nonlinear analysis. The Hans Triebel Anniversary Volume. Proc. Conf. Teistungen, 2001 (ed. D.D. Haroske, Th. Runst, H.-J. Schmeißer), 341-352, Birkhäuser, Basel, 2003.
    • Y. IL'YASOV, TH. RUNST: Positive solutions for indefinite inhomogeneous Neumann elliptic problems. Electron. J. Diff. Eqns., 57, 1-21, 2003.
    • TH. KÜHN, H.-G. LEOPOLD, W. SICKEL, L. SKRZYPCZAK : Entropy numbers of Sobolev embeddings of radial Besov spaces. J. Approx. Theory, 121, 244-268, 2003.
    • H. TRIEBEL : Wavelet frames for distributions; local and pointwise regularity. Studia Math., 154 (1), 59-88, 2003.
    • H. TRIEBEL : Characterisation of function spaces via mollification: fractal quantities for distributions. J. Function Spaces Appl., 1 (1), 75-89, 2003.
    • H. TRIEBEL : Non-smooth atoms and pointwise multipliers in function spaces Ann. Mat. Pura Appl., 182 (4), 457-486, 2003.
    • H. TRIEBEL : Fractal characteristics of measures, an approach via function spaces J. Fourier Anal. Appl., 9 (4), 411-430, 2003.
    • H. TRIEBEL : The positivity property of function spaces. Function spaces VI, Proc. Conf. Wroclaw, 2001, 263-274, World Scientific, 2003.
  • 2002
    • G. BOURDAUD, M. LANZA DE CRISTOFORIS, W. SICKEL : Functional Calculus on BMO and related spaces. J. Funct. Anal., 189, 515-538, 2002.
    • M. BRICCHI: Existence and Properties of h-Sets. Georgian Math. J., 9(1), 13-32, 2002.
    • H. KOCH, W. SICKEL : Pointwise multipliers of Besov spaces of smoothness zero and spaces of continuous functions. Rev. Mat. Iberoamericana, 18 (3), 587-626, 2002.   [ MSCExternal link ...]
    • H. TRIEBEL : Towards a Gausslet analysis : Gaussian representations of functions. In M. Cwikel, M. Englis, A. Kufner, L.-E. Persson, and G. Sparr, editors, Function Spaces, Interpolation Theory and Related Topics. Proc. Conf. Lund, August 2000, 425-450, de Gruyter Proceedings, 2002.
    • H. TRIEBEL : Sharp embeddings in function spaces. In: Functions, Series, Operators. Alexits Memorial Conf., Budapest, 1999, 39-73, J. Bolyai Math. Soc., Budapest, 2002.
    • H. TRIEBEL : Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Complut., 15 (2), 475-524, 2002.
    • H. TRIEBEL : Fraktale Analysis aus der Sicht der Funktionenräume. Jahresber. DMV, 104 (4), 171-199, 2002.
    • H. TRIEBEL, D. YANG : Spectral theory of Riesz potentials on quasi-metric spaces. Math. Nachr., 238, 160-184, 2002.
  • 2001
    • W. FARKAS : Eigenvalue distribution of some fractal semi-elliptic differential operators. Math. Z., 236 (2), 291-320, 2001.   [ MSCExternal link ...]
    • Y. IL'YASOV, TH. RUNST: On the existence of multiple positive solutions for a class of non-linear Neumann boundary value problems. Report Russian Sciences, 376(3), 1-3, 2001.   [ MSCExternal link ...]
    • M. KRBEC, H.-J.SCHMEISSER : Imbeddings of Brézis-Wainger type. The case of missing derivatives. Proc. R. Soc. Edinb., Sect. A, Math., 131, No.3, 667-700, 2001.   [ MSCExternal link ...]
    • K. RUNOVSKI : On Jackson type inequality in Orlicz classes. Rev. Mat. Complut., 14, 395-404, 2001.
    • K. RUNOVSKI, H.-J.SCHMEISSER : Inequalities of Calderon-Zygmund type for trigonometric polynomials. Georgian Math. J., 8(1), 165-179, 2001.   [ MSCExternal link ...]
    • K. RUNOVSKI, H.-J.SCHMEISSER : On some extensions of Bernstein's inequality for trigonometric polynomials. Functiones et Approximatio, 29, 125-142, 2001.   [ MSCExternal link ...]
    • V.S. RYCHKOV : Littlewood-Paley theory and function spaces with Aploc weights. Math. Nachr., 224, 145-180, 2001.
    • H. TRIEBEL : Regularity theory for some semi-linear equations : the $Q$-method. Forum Math., 13 (1), 1-19, 2001.   [ MSCExternal link ...]
    • H. TRIEBEL : Refined solutions of some integral equations. Functiones et Approximatio, 29, 143-158, 2001.  
  • 2000
    • H. BOCHE : Untersuchungen zum Verhalten des Hardy-Littlewood Maximaloperators. Illinois J. Math., 44 (2), 221-229, 2000.
    • Z. BURINSKA, K. RUNOVSKI, H.-J.SCHMEISSER : On the method of approximation by families of linear polynomial operators. Z. Anal. Anwendungen, 19(3), 677-694, 2000.   [ MSCExternal link ...]
    • D.E. EDMUNDS, D.D.HAROSKE : Embeddings in spaces of Lipschitz type, entropy and approximation numbers, and applications. J. Approx. Theory, 104 (2), 226-271, 2000.   [M SCExternal link ...]
    • W. FARKAS : Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr., 209, 83-113, 2000.   [ MSCExternal link ...]
    • W. FARKAS, J. JOHNSEN, W. SICKEL : Traces of anisotropic Besov-Lizorkin-Triebel spaces - a complete treatment of the borderline cases. Math. Bohem., 125 (1), 1-37, 2000.   [ MSCExternal link ...]
    • D.D. HAROSKE: Embeddings in spaces of Lipschitz type, entropy and approximation numbers. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Syöte, 1999 (ed. V. Mustonen & J.Rakosnik), 99-112, Math. Inst. Acad. Sci. Czech Republic, Prague, 2000.   [ MSCExternal link ...]
    • D.D. HAROSKE: Logarithmic Sobolev spaces on Rn ; entropy numbers and some application. Forum Math., 12 (3), 257-313, 2000.   [ MSCExternal link ...]
    • D.D. HAROSKE: On more general Lipschitz spaces. Z. Anal. Anwendungen, 19(3), 781-800, 2000.   [ MSCExternal link ...]
    • Y. IL'YASOV, TH. RUNST: Existence and uniqueness theorems for equations of the type $Au(x)=g(x,u,Du)$ with degenerate and nonlinear boundary conditions. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Syöte, 1999 (ed. V. Mustonen & J.Rakosnik), 143-148, Math. Inst. Acad. Sci. Czech Republic, Prague, 2000.   [ MSCExternal link ...]
    • M. KRBEC, H.-J.SCHMEISSER : On extrapolation of Sobolev and Morrey type imbeddings. In : Function spaces : The fifth conference, Lecture notes in pure and applied math. 213 (ed. H. Hudzik & L. Skrzypczak), 297-322, Marcel Dekker, 2000.   [ MSCExternal link ...]
    • H.G. LEOPOLD : Embeddings for general weighted sequence spaces and entropy numbers. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Syöte, 1999 (ed. V. Mustonen & J.Rakosnik), 170-186, Math. Inst. Acad. Sci. Czech Republic, Prague, 2000.   [ MSCExternal link ...]
    • H.G. LEOPOLD : Embeddings and entropy numbers in Besov spaces of generalized smoothness. In : Function spaces : The fifth conference, Lecture notes in pure and applied math. 213 (ed. H. Hudzik & L. Skrzypczak), 323-336, Marcel Dekker, 2000.   [ MSCExternal link ...]
    • H.G. LEOPOLD : Embeddings and entropy numbers for general weighted sequence spaces: The non-limiting case. Georgian Math. J., 7(4), 731-743, 2000.   [ MSCExternal link ...]
    • V.S. RYCHKOV : Linear extension operators for restrictions of function spaces to irregular open sets. Studia Math., 140, 141-162, 2000.
    • H.-J. SCHMEISSER, W. SICKEL : Sampling theory and function spaces. In : Applied Mathematics Reviews, Vol. 1, 205-284, World Scientific, 2000.   [ MSCExternal link ...]
    • W. SICKEL, L. SKRZYPCZAK : Radial subspaces of Besov and Lizorkin-Triebel classes; extended Strauss lemma and compactness of embeddings. J. Fourier Analysis and Appl., 6 (6), 639-662, 2000.   [ MSCExternal link ...]
    • H. TRIEBEL : The Laplace operator in fractal domains. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Syöte, 1999 (ed. V. Mustonen & J.Rakosnik), 251-260, Math. Inst. Acad. Sci. Czech Republic, Prague, 2000.   [ MSCExternal link ...]
    • H. TRIEBEL : Taylor expansions of distributions. Numer. Funct. Anal. Optim., 21 (1&2), 307-317, 2000.   [ MSCExternal link ...]
    • H. TRIEBEL : Truncations of functions. Forum Math., 12 (6), 731-756, 2000.   [ MSCExternal link ...]
  • 1999
    • H. BOCHE : Untersuchungen zur abgeschnittenen Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen. Bull. Belg. Math. Soc., 6 (3), 1999.
    • G. BOURDAUD, W. SICKEL : Changes of variable in Besov spaces. Math. Nachr., 198, 19-39, 1999.   [MSCExternal link ...]
    • D.E. EDMUNDS, D.D.HAROSKE : Spaces of Lipschitz type, embeddings and entropy numbers. Dissertationes Math., Vol. 380, 1-43, 1999.   [M SCExternal link ...]
    • D.E. EDMUNDS, H.TRIEBEL : Sharp Sobolev embeddings and related Hardy inequalities : The critical case. Math. Nachr., 207, 79-92, 1999.   [ MSCExternal link ...]
    • D.E. EDMUNDS, H.TRIEBEL : Eigenfrequencies of isotropic fractal drums. Oper. Theory Adv. Appl., 110, 81-102, 1999.   [ MSCExternal link ...]
    • W. FARKAS : The Behaviour of the Eigenvalues for a Class of Operators Related to some Self-Affine Fractals in R2. Z. Anal. Anwendungen, 18 (4), 875-893, 1999.
    • W. FARKAS, H. TRIEBEL : The distribution of eigenfrequencies of anisotropic fractal drums. J. London Math. Soc., 60 (2), 224-236, 1999.   [ MSCExternal link ...]
    • V. FONF, V. SHEVCHYK : On decompositions of Banach spaces into a sum of operator ranges. Studia Math., 132 (1), 91-100, 1999.   [ MSCExternal link ...]
    • M. KRBEC, TH. SCHOTT : Superposition of imbeddings and Fefferman's inequality. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 2, No.3, 629-637, 1999.   [M SCExternal link ...]
    • H.G. LEOPOLD : Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration. Czechoslovak Math. J., 49(124), 633-644, 1999.   [ MSCExternal link ...]
    • A. PLICHKO, V. SHEVCHYK : On restriction properties of multiplication operators. Z. Anal. Anwendungen, 18 (1), 27-35, 1999.   [MSCExternal link ...]
    • TH. RUNST : On the existence of solutions of nonlinear boundary value problems at resonance in Sobolev spaces of fractional order. Hiroshima Math. J., 29, 313-325, 1999.   [ MSCExternal link ...]
    • TH. RUNST : A unified approach to solvability conditions for nonlinear second order elliptic equations at resonance. Bull. London Math. Soc., 31 (4), 385-414, 1999.   [ MSCExternal link ...]
    • TH. RUNST : Degenerate boundary value problems for elliptic operators in Sobolev spaces of fractional order. Vestnik RUDN, Math., 6 (1), 173-181, 1999.   [ MSCExternal link ...]
    • TH. RUNST, Y. IL'YASOV : On equations of the type Au=g(x,u,Du) with degenerate and nonlinear boundary condition. Tsukuba J. Math., 23(3), 505-528, 1999.   [M SCExternal link ...]
    • V.S. RYCHKOV : On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc., 60 (1), 237-257, 1999.
    • V.S. RYCHKOV : On a theorem of Bui, Paluszynski, and Taibleson. Trudy Mat. Inst. Steklov, 227, 286-298, 1999 (Russian); English transl. : Proc. Steklov Inst. Math., 227, 280-292, 1999.
    • TH. SCHOTT : Pseudodifferential operators in function spaces with exponential weights. Math. Nachr., 200, 119-149, 1999.   [ MSCExternal link ...]
    • V. SHEVCHIK : Spectral properties of some semi-elliptic operators in Lp spaces. Math. Nachr., 202, 151-162, 1999.   [ MSCExternal link ...]
    • V. SHEVCHIK : Remarks on Lp - mapping properties of a model semi-elliptic differential operator. Proc. A. Razmadze Math. Inst., 121, 125-134, 1999.  [ MSCExternal link ...]
    • W. SICKEL : Pointwise multipliers of Lizorkin-Triebel spaces. Oper. Theory Adv. Appl., 110, 295-321, 1999.   [ MSCExternal link ...]
    • W. SICKEL : On pointwise multipliers for Fsp,q(Rn) in case $\sigma$p,q < s < n/p. Ann. Mat. Pura Appl., 176, 209-250, 1999.   [ MSCExternal link ..., Manuskript: pdfExternal link]
    • W. SICKEL, F. SPRENGEL : Interpolation on sparse grids and tensor products of Nikol'skij-Besov spaces. J. Comput. Anal. Appl., 1 (3), 261-286, 1999.   [MSCExternal link]
    • W. SICKEL, F. SPRENGEL : Some error estimates for periodic interpolation of functions from Besov spaces. In W. Haußmann, K. Jetter, and M. Reimer, editors, Advances in Multivariate Approximation, Mathematical Research 107, 269-288, Wiley-VCH, Berlin, 1999.   [ MSCExternal link]
    • W. SICKEL, A. YOUSSFI : The characterisation of the regularity of the Jacobian determinant in the framework of potential spaces. J. London Math. Soc., 59 (2), 287-310, 1999.   [ MSCExternal link]
    • W. SICKEL, A. YOUSSFI : The Characterization of the Regularity of the Jacobian Determinant in the framework of Bessel Potential Spaces on Domains. J. London Math. Soc. , 60 (2), 561-580, 1999.   [ MSCExternal link ]
    • H. TRIEBEL : Decompositions of function spaces. Progr. Nonlinear Differential Equations Appl., 35, 691-730, 1999.   [MSCExternal link ...]
    • H. TRIEBEL : Function spaces and spectra of elliptic operators on a class of hyperbolic manifolds. Studia Math., 134 (2), 179-202, 1999.   [ MSCExternal link ...]
    • H. TRIEBEL : Hardy inequalities in function spaces. Math. Bohem., 124 (2-3), 123-130, 1999.   [ MSCExternal link ...]
    • H. TRIEBEL : Sharp Sobolev embeddings and related Hardy inequalities : The sub-critical case. Math. Nachr., 208, 167-178, 1999.   [ MSCExternal link ...]
    • H. TRIEBEL : Quarks, fractals, non-linearities, and related elliptic operators. Proc. Conf. 'Nonlinear analysis, function spaces and applications VI', Prague, 1998; 200-222, Math. Inst. Czech Acad. Sci., Prague, 1999.   [ MSCExternal link ...]
  • 1998
    • H. BOCHE : Divergenzverhalten mehrdimensionaler Shannonscher Abtastreihen. manuscripta math., 95 (2), 137-148, 1998.
    • H. BOCHE: Untersuchungen zur kompatiblen Einseitenbandmodulation. frequenz, 52 (1-2), 35-39, 1998.
    • H. BOCHE, M. PROTZMANN: Überabtastung und Rekonstruktion verlorener Werte bandbegrenzter Signale. ZAMM, 78 (11), 785-792, 1998.
    • R. CROSS, V. SHEVCHYK : Disjointness of operator ranges in Banach spaces. Quaestiones Math., 21, (3 & 4), 247-260, 1998.  [ MSCExternal link ...]
    • D.E. EDMUNDS, H.TRIEBEL : Spectral theory for isotropic fractal drums. C. R. Acad. Sci. Paris, t. 326, S. I, p. 1269-1274, 1998.   [M SCExternal link ...]
    • D.E. EDMUNDS, H.TRIEBEL : Logarithmic spaces and related trace problems. Functiones et Approximatio, XXVI, 189-204, 1998.   [M SCExternal link ...]
    • D. HAROSKE: Some logarithmic function spaces, entropy numbers, applications to spectral theory. Dissertationes Math., Vol. 373, 1-59, 1998.   [M SCExternal link ..., Manuskript: pdfExternal link]
    • M. KRBEC, TH. SCHOTT : Imbeddings of weighted Sobolev spaces in the borderline case. Real Anal. Exchange , 23 (1997-98), no. 2, 395-420.   [M SCExternal link ...]
    • M. MALARSKI: Regularity-properties of the solution of the homogeneous wave equation. Math. Nachr., 190, 185-201, 1998.   [M SCExternal link ...]
    • S.B. ROBINSON, TH. RUNST : Solvability conditions for semilinear elliptic boundary value problems at resonance with bounded and unbounded nonlinear terms. Adv. Differential Equations, 3 (4), 595-624, 1998.   [M SCExternal link ...]
    • K.V. RUNOVSKII, H.-J. SCHMEISSER: On Marcinkiewicz-Zygmund-type inequalities for irregular knots in Lp spaces, 0 < p < = $ \infty $. Math. Nachr., 189, 209-220, 1998.   [M SCExternal link ...]
    • K.V. RUNOVSKII, H.-J. SCHMEISSER : Marcinkiewicz-Zygmund-type inequalities for irregular knots and mixed metrics. Vestnik RUDN, Math., 4,5 (1), 90-115, 1997/98.   [M SCExternal link ..., Manuskript: pdfExternal link]
    • TH. RUNST : Semilinear elliptic boundary value problems at resonance with superlinear nonlinearities. Differencial'nye Uravnenija, 34, 1179-1185, 1998.   [ MSCExternal link ...]
    • V. RYCHKOV: Intrinsic characterizations of distribution spaces on domains. Studia Math., 127, 277-298, 1998.   [Manuskript : pdfExternal link]
    • TH. SCHOTT : Function spaces with exponential weights I. Math. Nachr., 189, 221-242, 1998.   [M SCExternal link ...]
    • TH. SCHOTT : Function spaces with exponential weights II. Math. Nachr., 196, 231-250, 1998.   [M SCExternal link ...]
    • W. SICKEL : Conditions on composition operators which map a space of Triebel-Lizorkin type into a Sobolev space. The case 1 < s < n/p. II. Forum Math., 10 (2), 199-231, 1998.   [M SCExternal link ..., Manuskript: pdfExternal link]
    • W. SICKEL : Necessary conditions on composition operators acting between Besov spaces. The case 1 < s < n/p. III. Forum Math., 10 (3), 303-327, 1998.   [M SCExternal link ..., Manuskript: pdfExternal link]
    • L. SKRZYPCZAK : Atomic decompositions on manifolds with bounded geometry. III. Forum Math., 10 (1), 19-38, 1998.   [M SCExternal link ...]
    • L. SKRZYPCZAK : The Triebel-Lizorkin scale of function spaces for the Fourier Helgason transform. Math. Nachr., 190, 251-274, 1998.   [M SCExternal link ...]
    • L. SKRZYPCZAK : Mapping properties of pseudodifferential operators on manifolds with bounded geometry. J. London Math. Soc., 57, 721-738, 1998.   [M SCExternal link ...]
    • L. SKRZYPCZAK : Spherical transform and Besov spaces on semisimple Lie groups. Functiones et Approximatio, 26, 181-187, 1998.   [M SCExternal link ...]
    • L. SKRZYPCZAK : Heat and harmonic extensions for function spaces of Hardy-Sobolev-Besov type on symmetric spaces and Lie groups. J. Approx. Theory, 35, 149-170, 1999.   [M SCExternal link ...]
    • H. TRIEBEL : Gaussian decompositions in function spaces. Result. Math., 34, 174-184, 1998.   [M SCExternal link ...]
  • 1997
    • H. BOCHE : Konvergenzverhalten der konjugierten Shannonschen Abtastreihe. Acta Math. Inform. Univ. Ostraviensis, 5, 13-26, 1997.
    • H. BOCHE : Über das Lokalisierungsprinzip bei mehrdimensionalen Shannonschen und konjugierten Shannonschen Abtastreihen. Acta Math. Inform. Univ. Ostraviensis, 5, 27-37, 1997.
    • H. BOCHE : Entwurf von Multisinussignalen mit der Newman Phase. Kleinheubacher Berichte, 40 (Deutsche Telekom AG, Technologiezentrum), 321 - 333, 1997.
    • H. BOCHE : Charakterisierung der Systeme zur Ermittlung der Fourier-Transformation. frequenz, 51 (7-8), 212-216, 1997.
    • H. BOCHE : Bemerkungen zum Rekonstruktionsverhalten endlicher Shannonscher Abtastreihen. frequenz, 51 (11-12), 289-291, 1997.
    • H. BOCHE : Zero-Crossing von bandbegrenzten Signalen und Bandpaß-Signalen. frequenz, 51 (11-12), 286-288, 1997.
    • H. BOCHE, J. FISCHER: Größenabschätzungen von überabgetasteten periodischen Signalen. frequenz, 51 (1-2), 60-64, 1997.
    • H. BOCHE, M. PROTZMANN: Bandbegrenzte Interpolation stetiger Funktionen. frequenz, 51 (5-6), 138-141, 1997.
    • H. BOCHE, M. PROTZMANN: A new algorithm for the reconstruction of bandlimited functions and their Hilbert transform. IEEE transactions of instrumentation and measurement, 46 (2), 442-444, 1997.
    • H. BOCHE, H. SCHREIBER: Rekonstruktionsverhalten von Abtast-Reihen mit Kosinus-roll-off-Kernen. Kleinheubacher Berichte, 40 (Deutsche Telekom AG, Technologiezentrum), 665-675, 1997.
    • H. BOCHE, H. SCHREIBER: The behaviour of the finite Shannon sampling series. In : Proc. SAMPTA '97, 419-425, Universidade de Aveiro, 1997.
    • W. FARKAS: An imbedding result for generalized Orlicz - Sobolev spaces. Rev. Roumaine. Math. Pures Appl., 42 (no. 7-8), 555-565, 1997.   [MSCExternal link ...]
    • D.D. HAROSKE: Embeddings of some weighted function spaces on Rn ; entropy and approximation numbers. A survey of some recent results. An. Univ. Craiova Ser. Mat. Inform., vol. XXIV, 1-44, 1997.   [MSCExternal link ..., Manuskript: pdfExternal link]
    • J. JOHNSEN, TH. RUNST: Semi-linear boundary problems of composition type in Lp-related spaces. Comm. PDE, 22 (7 & 8), 1283-1324, 1997.   [MSCExternal link ...]
    • H.G. LEOPOLD, E. SCHROHE: Invariance of the Lp spectrum for hypoelliptic operators. Proc. Amer. Math. Soc., 125 , 3679-3687, 1997.  [MSCExternal link ...]
    • K.V. RUNOVSKII, W. SICKEL: Marcinkiewicz-Zygmund-type inequalities, trigonometric interpolation on non-uniform grids and unconditional Schauder bases in Besov spaces on the torus. Z. Anal. Anwendungen, 16, 669-687, 1997.  [MSCExternal link ...]
    • TH. RUNST: Singularity theory in quasi-Banach spaces with applications to semilinear elliptic equations II. Math. Nachr., 184, 275-311, 1997.  [MSCExternal link ...]
    • TH. RUNST, A. YOUSSFI: The Jacobian determinant equation on Besov-Triebel-Lizorkin spaces. Nonlinear World, 4, 267-282, 1997.  [MSCExternal link ...]
    • V. RYCHKOV: Some weighted Hardy-type inequalities and applications. Proc. of A. Razmadze Math. Inst., 112, 113-129, 1997.
    • V. RYCHKOV: On weighted estimates for a class of the Volterra integral operators. Dokl. Ros. Akad. Nauk., 357, 1997.
    • W. SICKEL: Necessary conditions on composition operators acting on Sobolev spaces of fractional order. The critical case 1 < s < n/p. Forum Math. , 9, 267-302, 1997.   [MSCExternal link ..., Manuskript: pdfExternal link]
    • L. SKRZYPCZAK: Besov spaces on symmetric manifolds - the atomic decomposition. Studia Math., 124 (3), 215-238, 1997.   [MSCExternal link ...]
  • 1996
    • H. BOCHE: Charakterisierung des numerischen und analytischen Verhaltens der Hilberttransformation. Kleinheubacher Berichte, 39 (Deutsche Telekom AG, Technologiezentrum), 537 - 548, 1996.
    • H. BOCHE: Rekonstruktion nicht bandbegrenzter Signale aus äquidistant verteilten Meßpunkten. tm, 63 (5), 205-208, 1996.
    • H. BOCHE: Das Verhalten der Hilbert-Transformation und eine Problemstellung von W. Cauer. In : Tagungsband 2. ITG-Diskussion 'Neue theoret. Konzepte in der Elektrotechnik', IEEE CAS, 81-86, VDE-Verlag, 1996.
    • H. BOCHE, M. PROTZMANN: Rekonstruktion nicht bandbegrenzter Signale aus nichtäquidistant verteilten Meßpunkten. tm, 63 (3), 111-115, 1996.
    • H. BOCHE, M. PROTZMANN: The convergence behaviour of an algorithm for the reconstruction of bandlimited signals and their Hilbert transform. Proc. IASTED Intern. Conf. on Signal and Image Processing, Orlando 1996, 220-226.
    • G. BOURDAUD, W. SICKEL: Homeomorphisms which act on Besov spaces. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Paseky 1995 (ed. J.Rakosnik), 1-16, Prometheus Publ. House, Prague, 1996.
    • W. FARKAS: On the sharpness of the Orlicz - Sobolev imbedding theorem. Rev. Roumaine Math. Pures Appl., 41, 5-6, 311-320, 1996.   (Manuskript : pdfExternal link)
    • D. HAROSKE: Entropy numbers in weighted function spaces and applications. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Paseky 1995 (ed. J.Rakosnik), 207-214, Prometheus Publ. House, Prague, 1996.
    • M. KRBEC, H.-J.SCHMEISSER: Limiting embeddings - the case of missing derivatives. Ricerche di Matematica, vol. XLV, 423-447, 1996.   (Manuskript : pdExternal link
    • M. KRBEC, H.-J. SCHMEISSER: Extrapolation of reduced Sobolev imbeddings. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Paseky 1995 (ed. J.Rakosnik), 71-88, Prometheus Publ. House, Prague, 1996.   (Manuskript : pdfExternal link)
    • H.G. LEOPOLD : Spectral Invariance for Pseudodifferential Operators on Function Spaces. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Paseky 1995 (ed. J.Rakosnik), 101-112, Prometheus Publ. House, Prague, 1996.
    • H.G. LEOPOLD, E. SCHROHE: Trace theorems for Sobolev Spaces of Variable Order of Differentiation. Math. Nachr., 179, 223-245, 1996.   (Manuskript : pdfExternal link)
    • M. MALARSKI: Regularity properties of the solution to the wave equation in Besov spaces with p < 1. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Paseky 1995 (ed. J.Rakosnik), 239-244, Prometheus Publ. House, Prague, 1996.
    • TH. RUNST: Singularities in quasi-Banach spaces with applications to semilinear elliptic equations I. Math. Nachr., 180, 317-342, 1996.
    • TH. RUNST: Boundary value problems with composition-type non- linearities in generalized Sobolev spaces. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Paseky 1995 (ed. J.Rakosnik), 251-259, Prometheus Publ. House, Prague, 1996.
    • V.S. RYCHKOV: Splitting of Volterra integral operators with degenerate kernels. Trudy Mat. Inst. Steklov, 214 , (1996) (Russian). English Transl.: Proc. Steklov Inst. Math., 214, 260-278,1996.
    • TH. SCHOTT: Function spaces of Lizorkin-Triebel type with exponential weights. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Paseky 1995 (ed. J.Rakosnik), 267-272, Prometheus Publ. House, Prague, 1996.
    • W. SICKEL: Composition operators acting on Sobolev spaces of fractional order - a survey on necessary and sufficient results. Proc. Conf. "Function spaces, differential operators and nonlinear analysis", Paseky 1995 (ed. J.Rakosnik), 159-182, Prometheus Publ. House, Prague, 1996.   (Manuskript : pdfExternal link)
    • L. SKRZYPCZAK : Heat semi-group and function spaces on symmetric spaces of the noncompact type. Z. Anal. Anwendungen., 15 (4), 881-899, 1996.
    • H. TRIEBEL, H. WINKELVOSS: Intrinsic atomic characterizations of function spaces on domains. Math. Zeitschrift, 221, 647-673, 1996.   (Manuskript : pdfExternal link)
    • H. TRIEBEL, H. WINKELVOSS: A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces. Studia Math. 121(2), 149-166, 1996.   (Manuskript : pdfExternal link)
  • 1995
    • R. CROSS, M. OSTROVSKII, V. SHEVCHYK: Operator ranges in Banach spaces. Math. Nachr., 173, 91-114, 1995.
    • D.E. EDMUNDS, H.TRIEBEL: Logarithmic Sobolev spaces and their applications to spectral theory. Proc. London Math. Soc., 71 (3), 333-371, 1995.
    • W. FARKAS : A Calderon - Zygmund extension theorem for abstract Sobolev spaces. Stud. Cerc. Mat., 47, 5-6, 379-395, 1995.   (Manuskript : pdfExternal link)
    • V. FONF, V. SHEVCHYK: On a presentation of the Banach space in a form of the sum of two operator ranges. Func. Anal. and Appl., 29, 91-93, (Russian), 1995.
    • J. FRANKE, TH. RUNST: Regular elliptic boundary value problems in Besov-Triebel-Lizorkin spaces. Math. Nachr., 174, 113-149, 1995.
    • D. HAROSKE: Approximation numbers in some weighted function spaces. J.Approx.Theory, 83 (1), 104-136, 1995.   (Manuskript : pdfExternal link)
    • H.-J. SCHMEISSER: Abtasttheorem aus der Sicht der Theorie der Funktionenräume. Proc. Wavelet-Approximation und Anwendungen, 48-53, Lübeck, 1995.   (Manuskript : pdfExternal link)
    • V. SHEVCHYK: Properties of restrictions of an operator of multiplication by continuous function. Ukrainian Math. J. , 47, 1720-1722, 1995.
    • W. SICKEL, H.TRIEBEL: Hölder inequalities and sharp embeddings in function spaces of Bsp,q and Fsp,q type. Z. Anal. Anwendungen, 14, 105-140, 1995.   (Manuskript : pdfExternal link)
    • H. TRIEBEL: Mathematische Modellbildung. Berlin-Brandenb. Akad. Wiss., Berichte und Abhandlungen, 1, 13-19, 1995.
    • H. TRIEBEL, H. WINKELVOSS: The dimension of a closed subset of Rn and related function spaces. Acta Math. Hungar., 68 (1-2), 117-133, 1995.   (Manuskript : pdfExternal link)
  • 1994
    • D.E. EDMUNDS, H.TRIEBEL: Eigenvalue Distributions of Some Degenerate Elliptic Operators: an Approach via Entropy Numbers. Math. Ann., 299, 311-340, 1994.
    • V. FONF, V. SHEVCHYK: Operators dense embedding and quasicomplements of subspaces of Banach spaces. Arch. Math., 62, 539-544, 1994.
    • D. HAROSKE, H.TRIEBEL: Entropy numbers in weighted function spaces and eigenvalue distribution of some degenerate pseudodifferential operators I. Math. Nachr., 167, 131-156, 1994.   (Manuskript : pdfExternal link)
    • D. HAROSKE, H.TRIEBEL: Entropy numbers in weighted function spaces and eigenvalue distribution of some degenerate pseudodifferential operators II. Math. Nachr., 168, 109-137, 1994.   (Manuskript : pdfExternal link)
    • H.G. LEOPOLD, H.TRIEBEL: Spectral invariance for pseudodifferential operators on weighted function spaces. manuscripta math., 83, 315-325, 1994.
    • TH. RUNST: Singularity theory and semilinear elliptic equations. Functional Analysis. Proceedings of the Essen conference, Nov. 1991, Lect. Notes Pure Appl. Math., 150, 107-121, M.Dekker, New York, Basel, Hongkong, 1994.
    • V. SHEVCHYK: On strictly quasicomplements and operators dense embedding. Ukrainian Math. J., 46, 789-792, (Russian), 1994.
    • H. TRIEBEL: Relations between approximation numbers and entropy numbers. J.Approx.Theory , 78, 112-116, 1994.
    • H. TRIEBEL: A localization property for Bsp,q and Fsp,q spaces. Studia Math. , 109 (2), 183-195, 1994.
    • H. WINKELVOSS: On the construction of fundamental matrices for uniformly elliptic systems of complex partial differential equations by superposition. J. Complex Variables Theory Appl., 24, 219-231, 1994.
  • 1993
    • N. JACOB, H.G. LEOPOLD: Pseudo Differential Operators with Variable Order of Differentiation generating Feller Semigroups. Integral Equations and Operator Theory, 17, 544-553, 1993.
    • H.G. LEOPOLD, E. SCHROHE: Spectral invariance for algebras of pseudodifferential operators on Besov-Triebel-Lizorkin spaces. manuscripta math., 78, 99-110, 1993.
    • L. PICK, W. SICKEL: Several types of intermediate Besov-Orlicz spaces. Math. Nachr., 164, 141-165, 1993.   (Manuskript : pdfExternal link)
    • TH. RUNST: Singularity theory in function spaces. Proc. Conf. "Summer school on function spaces, differential operators and nonlinear analysis", Friedrichroda 1992 (ed. H.-J. Schmeißer, H. Triebel), Teubner-Texte Math., 133, 218-234, Teubner, Stuttgart, Leipzig, 1993.
    • W. SICKEL: Pointwise multiplication in Triebel-Lizorkin spaces. Forum Math., 5, 73-91, 1993.
    • H. TRIEBEL: Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces. Proc. London Math. Soc., 66 (3), 589-618, 1993.
  • 1992
    • D.E. EDMUNDS, H.TRIEBEL: Entropy Numbers and Approximation Numbers in Function Spaces II. Proc. London Math. Soc., 64 (3), 153-169, 1992.
    • H.G. LEOPOLD, E. SCHROHE: Spectral Invariance for Algebras of Pseudodifferential Operators on Besov Spaces of Variable Order of Differentiation. Math. Nachr., 156, 7-23, 1992.
    • W. SICKEL: Characterization of Besov-Triebel-Lizorkin spaces via approximation by Whittaker's cardinal series and a related unconditional Schauder bases. Constructive Approximation, 8, 257-274, 1992.
    • W. SICKEL: Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ., 27, 481-497, PWN-Polish Scientific Publ., Warsaw, 1992.
    • W. SICKEL: Superpositon of functions in Bessel potential spaces. Proc. of the 17 th Seminar in PDE, Cheb 1992, 85-91, University of West Bohemia, 1992.
    • H. TRIEBEL: Characterization of Fsp,q spaces via local means; the extension problem. AMS, Proc. Steklov Inst. Math., 3, 219-233, 1992
  • 1991
    • M. GEISLER, TH. RUNST: On a superlinear Ambrosetti-Prodi problem in Besov and Triebel-Lizorkin spaces. J. London Math. Soc. (2), 43(2), 324-336, 1991.
    • H.G. LEOPOLD: On function spaces of variable order of differentiation. Forum Math., 3(1), 1-21, 1991.
    • M. MALARSKI, H. TRIEBEL: Anisotropic function spaces: Hardy's inequality and traces on surfaces. Czechoslovak Math. J., 41(116)(3), 518-537, 1991.
    • L. PÄIVÄRINTA, TH. RUNST: Multiplicity results for semilinear elliptic boundary value problems in Besov and Triebel-Lizorkin spaces. Proc. Edinburgh Math. Soc. (2), 34(3), 393-410, 1991.
    • W. SICKEL: Some remarks on trigonometric interpolation on the $n$-torus. Z. Anal. Anwendungen, 10(4), 551-562, 1991.
    • W. SICKEL: A remark on orthonormal bases of compactly supported wavelets in Triebel-Lizorkin spaces. The case $0Arch. Math. (Basel), 57(3), 281-289, 1991.
    • H. TRIEBEL: Inequalities in the theory of function spaces: a tribute to Hardy, Littlewood and Pólya.Inequalities (Birmingham, 1987), Lecture Notes in Pure and Appl. Math., 129, Dekker, New York, 231--248, 1991.